盗火者 窥探生命宇宙的边缘 三位生物医学大模型时代 (盗火者百度百科)

文章编号:37357 资讯动态 2024-11-30 医学影像AIGPT大模型

生命科学的爆发可能像GPT一样很快到来。

在如今的大模型浪潮中,来自全球学术、工业、投资界的一群人,正俯瞰着创新乏善可陈的 AI 谷地,他们眉头紧皱,一筹莫展:可研究、能落地的方式,应用尽用,瓶颈触手可及。

然而有那么一批开拓者,把科学和应用之手,伸向了饱受争议、遥遥无期的人迹罕至之地:通用人工智能。在他们的勘探下,人工智能终于被掀开守护了60年的真实容颜,让GPT和大模型,展露在众目睽睽之下。

当生命科学的人聊起AI新浪潮,焦虑、渴望与机遇,成为这群人的共同写照。

生命科学领域的很多问题还有待于解答和观察,大模型能否刺破笼罩在科学上空的漫漫长夜,带领一群人破译生命密码?

由GAIR研究院、世界科技出版社、科特勒咨询集团、联合合办的GAIR大会8月14-15日在新加坡成功举办。而针对当下科技圈的最新趋势,15日上午「破解生命密码的三种范式」分论坛,请到了三位生命科学领域的实干家,请他们来分享自己的真知灼见。

三位来会发言的嘉宾分别是:

密苏里大学教授,AAAS / AIMBE Fellow,许东

微软云与人工智能事业部首席科学家,陈梅

纽约市立大学教授,IEEE / IAPR Fellow,田英利

核心观点:

许东认为,基于图像和自然语言的大规模数据训练的基础模型,为广泛的应用提供了前所未有的机会。

当与基于提示的学习相结合时,这些模型的潜力被进一步放大,即使使用少量标记数据也可以实现最先进(SOTA)的性能。

本次论坛许东重点介绍了两个基础模型在生物医学领域的应用:ChatGPT和Segment Anything Model (SAM)。

他指出,随着文献量呈指数级增长,人工检索方法无法有效提取嵌入式知识。作为回应,许东和团队开发了一个途径管理管道,协同图像理解和文本挖掘技术来破译生物知识。

该管道采用SAM、对比学习和暹罗网络来识别路径实体的关键属性及其关系。整合ChatGPT对基因相互作用的预测能力已被证明有助于增强途径信息的提取。

为了优化ChatGPT的响应,应用了一种新颖的迭代提示改进策略,其中使用F1分数、精度和召回率等指标评估这些提示的有效性,然后将评估结果馈送到ChatGPT中以提出更好的提示。更进一步的,许东使用思想树迭代进一步改进了提示。

此外,基于提示学习的方法,许东也从冷冻电子显微镜(cryo-EM)图像中进行基于SAM的蛋白质鉴定。研究结果强调了基于提示的学习,在有效的生物医学数据分析和预测方面的潜在效用。

陈梅分享了一种在医学影像分析中,可以减轻标记数据收集负担的方法——无监督域自适应(UDA)。

据陈梅介绍,自动化医学图像分析的成功取决于大规模和专家注释的训练集,而医学图像高质量标记数据的获取成本十分高昂,经过长期的研究,陈梅及其合作者发现无监督域自适应能够解决这一问题。

田英利分享了其团队在AI驱动的虚拟对比度增强与AI驱动的自动癌症诊断两个方向上的研究。

田英利团队提出的细节感知双路径对比度增强框架,能够将图像分为四个等级,提取更详细的特征,获得更精确的虚拟对比增强CT,以解决肾脏病人对造影剂过敏的问题。

此外,她还指出了当前肺癌检测方法中存在的缺陷,如小结节难以检出、特异性低、鲁棒性低等,并提出了基于三维特征金字塔网络(3DFPN)的AI驱动的自动肺结节检测方法。

这些观点并非都是共识,也只揭开了大浪潮的冰山一角,但仍体现了变革浪潮里生命科学人的思考与探索。

受限于篇幅,我们选取部分内容进行梳理,分享给更多对AI领域感兴趣的人士。期待更多人参与到生命科学的大模型实践中,共同汇入社会创新的时代洪流。

密苏里大学许东:基础模型本身就可视为黑盒,ChatGPT也有可能进化为具有超强推理能力的「知识图谱」

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

这一年NLP学术领域飞速发展。其中最火的两个概念就是contrastive Learning(对比学习)和 prompt-based learning(提示学习)。

众所周知,AI领域除了算力贵,有价值的标注数据也非常昂贵。而无论是对比学习还是模板学习,都开始解决少量标注样本,甚至没有标注样本时,让模型也能有不错的效果。

而prompt-based learning算是目前学术界向少监督,无监督,高精度的方向发展最新的研究成果。

作为今天「破解生命科学范式」的首位嘉宾,密苏里大学的许东教授的分享题目是《Prompt-based learning for analyses of biomedical images and text》(基于提示学习的生物医学图像和文本分析),引起了现场的重点关注。

许东将机器学习分成四个阶段:

第一阶段,特征工程,即手动特征提取,以SVM或简单的神经网络为代表。

第二阶段,构架工程,即用原生特征,在深度学习网络上做各种调整。

第三阶段,目标工程,即采用预训练大型模型并对其进行微调,以Bert为典型代表。

第四阶段,提示工程,即在基础大模型上做各种各样的应用,比如zero/few shots 。

许东认为,提示学习使得机器学习有了一个根本性改变:从过去比拼的大数据、大模型、大算力,转向用小数据、小模型、小算力解决实际问题。

也就是说,只需要将较小规模的模型接入到大模型上,即混合模型,那么训练要求也随之降低,可以用很小的算力做很多事情,尤其是是对没有太多计算资源的学术实验室和医院非常友好。

对于基础模型的定义,许东认为一个基础模型至少要符合三点:可被提示、适用广谱的下游应用、有超大的训练数据并达到智能涌现(可理解为:具备一定推理能力)。只有满足这三点,“基础模型本身就可以当作黑盒,且聚焦应用本身”,最终推动“人工智能的工业时代”的到来。

他近一步解释,过去很多人批评机器学习,说它是黑箱。但在提示工程时代黑箱可能是一件好事。因为你不需要关心里面的复杂度。就像你用手机一样,关注点只是界面交互,而非手机的制造工艺。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

在当前的基础大模型竞赛中是,许东从图像和自然语言两方面入手,在本次论坛上重点介绍了两个基础模型在生物医学领域的应用:ChatGPT和Segment Anything Model (SAM)。

值得注意的是,许东教授此次尝试,也代表了国际上最早进行大模型生物医学实践的团队。

他通过大量实践得出结论:如今大规模数据训练的基础模型,为广泛的应用提供了前所未有的机会。尤其是当与基于提示的学习相结合时,这些模型的潜力被进一步放大,即使使用少量标记数据也可以实现最先进(SOTA)的性能。

首先,一般人研究ChatGPT ,主要将其作为一个对话工具或者知识查询工具,许东开创性提出:ChatGPT对广谱的文本进行加缩,本身就成了一个具有超强推理能力的“知识图谱”。

从科学角度来说,很多人会质疑“如何规避ChatGPT中的‘幻觉‘问题”,但许东指出,“幻觉做计算的时候不算什么,可以视为一种false positive(假阳性),即预测过程中的正常情况。只是我们要用科学的方法来研究它、量化它、控制它。”

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

与此同时,许东也指出,ChatGPT(更明确说是GPT-3.5)并不能直接用于生物医学研究,它更像个话唠,不加控制将时更易产生滔滔不绝的回答。

因此首要工作是将其结果和“ground truth”(真实数据)做严格比较。作为计算生物学家,许东更想让ChatGPT回答:“基因A和基因B到底有什么关系?”“人类应该怎么设计好的提示来做这个问题?”,使得结果更符合生物学的知识。

其次,还要严格按照机器学习的方法来做提示(prompt),设置Ground Truth、搭建训练集、检验集和测试集等。

作为测试,许东和团队将ChatGPT进行了角色定义--一个计算生物学家,并要求ChatGPT回答“基因A和基因B之间的关系”,并明确要求只限于4种回答:“激活”,“抑制”,“磷酸化”或“无信息”。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘 三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

在实验过程中,许东发现,“Few-Shot Prompting对训练模型只有很小的作用,但它更大的作用是示范--告诉ChatGPT我们要解决的问题是什么?”

这是实验中的关键一步,随后你可以再告诉ChatGPT一些知识,即chain of thoughts(思维链)。

为了优化ChatGPT的响应,许东应用了一种新颖的迭代提示改进策略,其中使用F1分数、精度和召回率等指标评估这些提示的有效性,然后将评估结果馈送到ChatGPT中以提出更好的提示。

通过这种做法,可以是把所谓“硬提示”变成可以调整的“软提示”来优化,但不同于常规的软提示。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘 三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

结果显示,这种方法能够明显体现出ChatGPT的智能涌现。也就是说,“它达到了反思能力--开始思考自己是否达到最好。并且后续的改动非常少。”

举个例子,它最初的身份是“一名计算生物学家”,但经过数次自我提示和迭代后,它变成了“一名专门研究基因相互作用的分子生物学家”。再比如,ChatGPT在activation incubation这一回答后加了一个括弧-- gene one activates gene two。

许东表示,这些东西好像没有什么意义,但是它确实把格式定义得更清楚了,所以这些细小的这种调整使得它的这个整体表现大大提高。

此外,许东指出,ChatGPT不光能做两个基因的关系,还可以做基因链的关系--一个基因链的作用,最终是从基因A到基因B,但中间经过了C、 D再到B。这一研究也可以让ChatGPT通过思维链的方式把整体网络搭建出来。这就便意味着,ChatGPT可以构建更大的知识图谱。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

此外,基于提示学习的方法,许东也从冷冻电子显微镜(cryo-EM)图像中进行基于SAM的蛋白质鉴定。研究结果强调了基于提示的学习,在有效的生物医学数据分析和预测方面的潜在效用。

最后,许东表示,ChatGPT的整体表现一骑绝尘,但是产品本身不太稳定,有人评估发现今年6月ChatGPT的推理能力要弱于3月,正如昨天GAIR大会黄学东院士提到,AI要在工业界的落地应用应考虑「集成式 AI」的实践与可能,即三个臭皮匠顶个诸葛亮。

许东强调,“在学术上也要有三个臭皮匠的故事。”

针对他当前所做的提示工程,许东也表示,虽然提供工程量小,但要求很高,不能随便拿几个小数据来做,而且选的数据必须有代表性,不能是特别极端的数据;此外提示工程的泛化能力可能不如一些普通的机器学习。比如当两个任务很接近时,提示工程可能无法进行。

最后许东再次感触,“机器学习一个非常著名的定理--No Free Lunch定理。没有一种通用的学习算法可以在各种任务中都有很好的表现,需要对具体问题进行具体的分析。”

微软陈梅:无监督域自适应,将降低医学影像高质量标记数据的获取难度

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

陈梅指出,AI技术发展之快、规模之大前所未有,不论任何领域都应当努力适应AI技术的进步,以确保自己走在行业的最前沿。

多年来,陈梅花费了大量的精力研究显微图像,并在2016年与合作伙伴共同创办了CVMI(Workshop on Computer Vision for Microscopy Image Analysis)会议,此次她的分享题目是《AI for microscopy image analysis 3.0》。

显微图像的研究一直随AI技术的迭代而发展,比如此前人们对分割、对神经网络的探索等等,在这一过程中,越来越多的人开始关注病理学。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

今年以来,显微技术有了很大的发展,图像分辨率也不断提高,让研究者们得以对每个单细胞进行深入的了解。

大规模和专家注释的训练集对医学图像分析至关重要,然而,对医学图像来说,想要获得高质量的标记数据,必须具备一定的专业知识,因此往往比其他领域数据集的创建更加昂贵。

为了减轻标记数据收集的负担,陈梅及其合作者多年来专注无监督学习适应的研究。研究发现,无监督域自适应在这一领域大有可为。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

当然,无监督域自适应的应用仍存在挑战:

1、基于梯度的优化需要足够的标记数据来指导大量的更新步骤

2、域偏移/小数据制度导致更新信号嘈杂或过拟合

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

据此,陈梅及其合作者提出利用梯度空间的低秩性,优化轨迹蒸馏以及为学习目标领域和新类提供外部导航。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

这一方法解决了分类自适应跨域自适应场景中的主要障碍——沿网络优化导航不足的问题。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

具体来看,双流蒸馏算法可以分为跨域和跨类蒸馏,将学习动态从源域和锚类提取到目标域和新类:

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

陈梅及其合作者曾讨论,是否放弃历史自蒸馏的方法,即以前使用的方法。如果目标领域与源领域有诸多共同点,无监督适应就有比较好的普适性;否则普适性比较差。

历史自蒸馏可以利用扁平最小值区域和模型普适性之间的相关性;其次,校准梯度下降步骤以平滑优化,从而提升普适性。

优化过程中,我们的具体步骤如下:

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘 陈梅及其合作者做了很多实验来验证,双流蒸馏算法能够适用于常见的许多数据集,如癌症组织表型、部件消融研究等等。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘 三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

对其他类型的数据,双流蒸馏算法也能够发挥作用,针对放射学中的肺炎筛查,糖尿病视网膜病变眼底影像分级,以及在艺术与真实世界领域的价值这三个任务,陈梅及其合作者也已经进行过评估,相比其他方法,整体水平均有提升。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

从我们的研究成果来看,跨域跨类优化轨迹蒸馏,能够校准未充分注释的域和类的学习动态;历史自蒸馏通过调节梯度分布,能够获得可推广的解。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

纽约市立大学田英利:虚拟对比增强CT,可有效提升不使用造影剂的医学图像质量

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

田英利专注利用计算机视觉和机器学习等技术帮助老年人、视障、听障等特殊人群,在《AI-driven Automated Medical Image Analysis 》演讲中,她介绍了如何应用AI驱动的技术帮助医生分析医学图像。

田英利团队的研究围绕两个主题进行:

人工智能驱动的虚拟对比度增强——突出血管和器官的内部结构。

人工智能驱动的自动癌症诊断——病灶检测、分割和亚型识别。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

田英利团队专注肺癌和肾癌两种疾病的研究。

在测定肾功能时,医生需要向患者体内注射造影剂,以增强造影效果。但是,部分肾病患者对造影剂过敏,因此医生只能减少注射量,这可能会影响患者器官的成像效果,使医生不得不重复注射,以得到更清晰的图像,反而得不偿失。

那么,AI技术能否帮助医生在获得医学影像时,减少或避免使用造影剂?

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

田英利团队尝试从没有使用造影剂的CT中,生成了虚拟对比增强CT,并与真实的使用造影剂的CT进行比较,得到了相似的效果。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

该技术应用于腹部器官成像时,面临的问题更为严峻,如造影前后器官的位置、方向会发生改变,腹部和骨盆处的CT扫描,只能从有限的数据中提取特征,同时还存在着模型过拟合等问题。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

为此,田英利团队提出了细节感知双路径对比度增强框架,尝试将图像分为四个等级,并提取更详细的特征,填充到一起获得虚拟对比增强CT。以下使用65名患者的医学影像形成的数据集。

田英利指出,这是医学影像处理的一大挑战,相比大语言模型技术,这一方法的计算量需求也非常大,但考虑到患者的隐私,实际上并没有太大的数据集可供使用。

当未来拥有足够大的数据集后,就可以为每种不同的特定应用选择通用的医疗模型。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

根据田英利所展示的对比图,第三行的虚拟对比增强CT效果最接近于真实的对比增强CT。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

除上述研究外,田英利团队在AI驱动的肺结节自动诊断检测领域也有深入研究。

目前主要的肺癌检测方法可分为2D检测网络与3D检测网络两类,2D检测网络存在缺少时间特征、检测精度低、假阳性率高等缺陷,3D监测网络同样存在假阳性率高的问题。

这些技术缺陷导致在肺结节检测中,存在着许多遗留问题,如小结节难以检出、特异性低、鲁棒性低等。

田英利团队研究的AI驱动的自动肺结节检测方法,使用了三维特征金字塔网络(3DFPN),具备更高的灵敏度和特异性。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

通过观察连续切片,田英利团队发现组织和结节在连续CT切片上的位置变化方向存在差异,并据此排除了许多假阳性案例。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

鲁棒结节检测框架3DFPN-HS,采用了自监督预训练模型,能够从图像中提取丰富的特征,对系统差异更具稳健性。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

该方法在888个CT中找到了1186个3-30mm的肺结节,其中四分之三得到了放射科医生的认可。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

此外,田英利还分享了AI驱动的肺结节自动诊断检测3D点云研究与AI驱动的肾脏和肾脏肿块自动诊断分割与分类。

她在演讲中指出,现有3D点云检测方法主要集中在小区域,团队的首要工作是处理肺部整体点云区域,并提出了3D电云结点检测框架。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

在肾脏和肾脏肿块自动诊断分割与分类工作上,田英利团队提出了肾脏及肾脏肿块诊断框架,基于形态学表现判断肾肿块亚型。

三位生物医学大模型时代「盗火者」,窥探生命宇宙的边缘

8月15日中午,GAIR大会的生命科学分论坛顺利告一段落。

当日活动延续了GAIR首日AI前沿创新的盛况,会上高朋满座,一时竟需要工作人员特殊加席,更有晚到的观众只能站立与会。生命科学的受关注程度也能由此可见一斑。

这个世界从不缺时代的注脚,GAIR存在的意义,就是让AI历史上的各种机缘与巧合,交织在一起,碰撞出新的思想与故事。

生命科学的未来一定会来,而这个未来将一定会属于实干者们!

原创文章,未经授权禁止转载。详情见 转载须知 。

全局中部横幅
轻跨境

轻跨境由中国联通授权运营跨境业务,为跨境电商用户提供全球范围内的跨境电商线路服务。

字体转换器在线转换

第一字体网为您提供最全的字体转换器在线转换、艺术字体在线生成器和字体下载,包括书法字体在线转换、毛笔字在线生成器,更有草书字体、篆体字、连笔字、POP字体转换器等中文和英文字体。

东北网

东北网是黑龙江影响力最强、访问量最大的综合性网站,是拥有新闻发布、资讯服务、视频播报、多语种传播、无线增值业务服务等多功能的新媒体平 台,开设黑龙江新闻、视频、健康等40多个内容频道及论坛、博客、微博、微信等互动交流,提供最全面的黑龙江信息。

wika威卡压力表

北京博朗宁科技是一家集研发、生产、贸易为一体的综合型企业,主要生产wika压力表、威卡压力变送器等产品,我们优质的产品和完善的服务为客户提供优良用户体验。

北京小区沥青路面施工

北京征途市政工程有限公司15201506662常年承接北京沥青路面施工、柏油路面施工、小区路面施工、彩色沥青路面施工、沥青路面修复等路面工程,是集公路道路施工,园林施工,市政工程基础建设的一家综合性强的公司。欢迎有意者来电垂询!

MPS芯源

品牌IC代理商(MPS代理商,芯源代理商,光大芯业代理商,士兰微代理商,贝岭代理商,南麟代理商)买品牌IC,找昊海鑫,寻找MPS代理商,芯源代理商,光大芯业代理商,士兰微代理商,贝岭代理商,南麟代理商等等可靠代理商,我们提供最好的代理商服务,为您提供优质的产品和服务.

贵阳钢模

贵州攀志兴钢模加工厂专业贵州钢模、贵阳钢模厂家,加工生产销售各种贵州建筑钢模、预埋件、隧道台车、钢支撑以及相关配套附件等,贵州本地企业,十年老品牌,诚信经营,品质保证,欢迎来电咨询!

深圳爱立家家居有限公司

爱立家家居,中国家居行业中的优秀品牌,隶属深圳爱立家家居,自成立以来,专业从事软体家居产品的研究、开发、生产与销售,为千万家庭提供健康、舒适、环保的客厅和卧房家居产品。

上海问涂信息技术有限公司

上海问涂信息技术有限公司(wentu.info)专业的微信小程序开发定制制作公司,最全、最热门、最实用的微信小程序,适合餐饮,商城,商家打折促销各类小程序开发应用。

低温喷雾干燥机

上海欧蒙喷雾干燥机厂家直销,提供节能、定制型喷雾干燥解决方案。我们专注于研发,产品**适用于多个行业,满足不同客户需求。立即访问我们的网站,了解更多详情和优惠信息!

湖北省文物考古研究院

湖北省文物考古研究院是中国南方规模最大、技术力量最为雄厚的专业研究机构之一,主要担负湖北省境内的考古调查、勘探与发掘任务,以及科研工作。

全局底部横幅