中国电力装机新布局抢先看 谁是黑马 一图看懂 装机容量 (中国电力装机规模)
2023年中国电力装机市场展现出了显著的增长态势。
根据数据,全国装机容量达到万千瓦,同比增长13.87%,对比2021年至2023年的趋势图1可见,装机增速明显加快。
电力结构呈现出多元化,火电虽占比48%,但面临可再生能源崛起的挑战。
火电作为稳定能源基础,通过快速调整输出确保电网稳定,起到了“兜底”作用,装机容量为万千瓦。
光伏发电的装机容量达到万千瓦,占总量21%,成为第二大电源。
得益于技术进步和成本下降,光伏发电在中国迅速普及,尤其在光照条件优越的西部地区,光伏电站广泛分布,对地方电力供应至关重要。
风电装机容量万千瓦,占比15%,中国是全球风电市场的重要参与者,陆地和海上风电场遍布全国,北方风能资源丰富的地区尤其依赖风电。
技术进步使得风电在电力结构中的比重有望提升。
水电装机容量万千瓦,占比14%,中国丰富的水资源推动了水电发展,水电站遍布大江大河,对电力调峰和安全至关重要。
新型水电项目如抽水蓄能的兴起,进一步增强了水电的调峰能力。
2023年新增装机总量万千瓦,火电新增5793万千瓦,水电804万千瓦,而光伏新增万千瓦,成为新增主力,风电新增7590万千瓦。
内蒙古、山东和广东等省份的装机情况突出,特别是内蒙古凭借丰富的能源资源位居首位,山东和广东则通过多元发展推动能源结构调整。
总体来看,中国正朝着可再生能源主导电力结构的方向转变,以实现碳达峰和碳中和目标,推动能源转型。
未来几年,火电等传统能源的份额将逐渐让位于清洁能源,如光伏和风电等。
风力发电的原理是什么
风力发电机的原理是风能通过叶轮转化为机械扭矩(风轮的转动惯量),发电机的定子电能经主轴传动链和齿轮箱提高到异步发电机的转速后,由励磁变换器并入电网。
如果超过发电机的同步转速,转子也会处于发电状态,通过变流器向电网馈电。
最简单的风力发电机可以由叶轮和发电机组成,站在一定高度的塔轴上,就是小型离网风机。
原风力发电机产生的电能随风时变,电压和频率不稳定,没有实际应用价值。
为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、制动系统和控制系统等。
详细介绍风扇有很多旋转部件,机舱在水平面上旋转,随时偏航对准风向;风轮沿着水平轴旋转,以产生动态扭矩。
对于变桨距风机来说,组成风轮的叶片要绕着叶根的中轴线旋转,以适应不同的风况,改变桨距。
当机器停止时,叶片应该顺桨以形成阻尼制动。
早期,液压系统用于调节叶片桨距(同时,用于减震、停止、制动等。
),现在电动变桨控制系统逐渐取代液压变桨控制。
就1,500kW风机而言,一般在风速为4m/s左右时自动启动,13m/s左右发出额定功率,然后随着风速的增大,一直控制在额定功率附近发电,直到风速达到25m/s时自动停止。
现代风力发电机的设计极限风速为60-70m/s,这意味着在如此高的风速下,风力发电机不会立即遭到破坏。
理论上12级飓风的风速范围只有32.7-36.9米/秒。
风机控制系统应根据风速和风向控制系统,以稳定的电压和频率运行,自动接通和断开电网;同时,变速箱和发电机的工作温度以及液压系统的油压会对任何异常发出警报,并在必要时自动停机,属于无人值守的独立发电系统机组。
我国风能资源分布状况 我国风能资源开发条件
中国风力资源十分丰富。
根据国家气象局的资料,我国离地10 米高的风能资源总储量约32.26亿千瓦,其中可开发和利用的陆地上风能储量有2.53亿kW,50米高度的风能资源比10米高度多1倍,约为5亿多kW。
近海可开发和利用的风能储量有7.5亿kW。
我国风能资源的分布与天气气候背景有着非常密切的关系,从我国风能资源分布图上可以清楚看出,我国风能资源丰富和较丰富的地区主要分布在两个大带里。
1.三北(东北、华北、西北)地区丰富带。
风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等,可利用的小时数在5000小时以上,有的可达7000小时以上。
这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。
冬季(12-2月)整个亚州大陆完全受蒙古高压控制,其中心位置在蒙古人民共和国的西北部,从高压中不断有小股冷空气南下,进入我国。
同时还有移动性的高压(反气旋)不时的南下,这类高压大致从四条路经侵入我国。
一条是源于俄罗斯的新地岛,经西北利亚及蒙古人民共和国进入我国,由于是西北向称为西北路径;第二条源自冰岛以南洋面,经俄罗斯、哈萨克斯坦,基本上是自西向东进入我国新疆,称为西路经;第三条源自俄罗斯的太梅尔半岛,自北向南经西北利亚、蒙古人民共和国进入我国,称为北路经;第四条源于俄罗斯贝加尔湖的东西伯利亚地区,进入我国东北及华北一带,称为东北路经。
这四条路经除东北路经外,一般都要经过蒙古人民共和国,当经过时蒙古高压得到新的冷高压的补充和加强,这种高压往往可以迅速南下,进入我国。
由于欧亚大陆面积广大,北部地区气温又低,是北半球冷高压活动最频繁的地区,而我国地处欧亚大陆东岸,正是冷高压南下必经之路。
三北地区是冷空入侵我国的前沿,一般在冷高压前锋称为冷锋,在冷锋过境时,在冷锋后面200km附近经常可出现大风就可造成一次6~10级(10.8~24.4m/s)大风。
对风能资源利用来说,就是一次可以有效利用的高质量大风。
从三北地区向南,由于冷空气从源地长途跋涉,到达我国黄河中下游再到长江中下游,地面气温有所升高,使原来寒冷干燥气流性质,逐渐改变为较冷湿润的气流性质,(称为变性)也就是冷空气逐渐的变暖,这时气压差也变小,所以,风速由北向南逐渐的减小。
我国东部处于蒙古高压的东侧和东南侧,所以盛行风向都是偏北风,只视其相对蒙古高压中心的位置不同而实际偏北的角度有所区别。
三北地区多为西北风,秦岭黄河下游以南的广大地区,盛行风向偏于北和东北之间。
春季(3~5月)是由冬季到夏季的过渡季节,由于地面温度不断升高,从4月开始,中、高纬度地区的蒙古高压强度已明显的减弱,而这时印度低压(大陆低压)及其向东北伸展的低压槽,已控制了我国的华南地区,与此同时,太平洋副热带高压也由菲律宾向北逐渐侵入我国华南沿海一带,这几个高、低气压系统的强弱、消长却给我国风能资源有着重要的作用。
在春季这几种气流在我国频繁的交绥。
春季是我国气旋活动最多的季节,特别是我国东北及内蒙一带气旋活动频繁,造成内蒙和东北的大风和沙暴天气。
同样地江南气旋活动也较多,但造成的却是春雨和华南雨季。
这也是三北地区风资源较南方丰富的一个主要的原因。
全国风向已不如冬季风那样稳定少变,但仍以偏北风占优势,但风的偏南分量显著的增加。
夏季(6~8月)东亚地面气压分布开势与冬季完全相反。
这时中、高纬度的蒙古高压向北退缩的已不清楚,相反地印度低压继续发展控制了亚州大陆,为全年最盛的季节。
大平洋副热带高压等时也向北扩展和向大陆西伸。
可以说东亚大陆夏季的天气气候变化基本上受这两个环流系统的强弱和相互作用所制约。
随着太平洋副热带高压的西伸北跳,我国东部地区均可受到它的影响,在此高压的西部为东南气流和西南气流带来了丰富的降水,但由于高、低压间压差小,风速不大,夏季是全国全年风速最小的季节。
夏季大陆为热低压、海上为高压,高、低压间的等压线在我国东部几呈南北向分布的型式,所以夏季风盛行偏南风。
秋季(9~11月),是由夏季到冬季的过渡季节,这时印度低压和太平洋高压开始明显衰退,而中高纬度的蒙古高压又开始活跃起来。
由于冬季风来的迅速,且稳定维持,不像春季中夏季风代表冬季风那种来回进退的型式。
此时,我国东南沿海已逐渐受到蒙古高压边缘的影响,华南沿海由夏季的东南风转为东北风。
三北地区秋季已确立了冬季风的形势。
各地多为稳定的偏北风,风速开始增大。
2.沿海及其岛屿地丰富带。
年有效风能功率密度在200瓦/米2以上,将风能功率密度线平行于海岸线,沿海岛屿风能功率密度在500瓦/米2以上如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等。
可利用小时数约在7000-8000小时,这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,所以风能丰富地区仅在海岸50km之内,再向内陆不但不是风能丰富区,反而成为全国最小风能区,风能功率密度仅50瓦/米2左右,基本上是风能不能利用的地区。
沿海风能丰富带,其形成的天气气候背景与三北地区基本相同,所不同的是海洋与大陆两种截然不同的物质所组成,二者的辐射与热力学过程都存在着明显的差异。
大气与海洋间的能量交换大不相同。
海洋温度变化慢,具有明显的热隋性,大陆温度变化快,具有明显的热敏感性,冬季海洋较大陆温暖,夏季较大陆凉爽,这种海陆温差的影响,在冬季每当冷空气到达海上时风速增大,再加上海洋表面平滑,摩擦力小,一般风速比大陆增大2-4m/s。
东南沿海又受台湾海峡的影响,每当冷空气南下到达时,由于狭管效应的结果使风速增大,这里是我国风能资源最佳的地区。
在沿海每年夏秋季节都可受到热带气旋的影响,当热带气旋风速达到8级(17.2m/s)以上时,称为台风。
台风是一种直径1000km左右的圆形气旋,中心气压极低,台风中心0-30km范围内是台风眼,台风眼中天气较好,风速很小。
在台风眼外壁天气最为恶劣,最大破坏风速就出现在这个范围内,所以一般只要不是在台风正面直接登陆的地区,风速一般小于10级(26m/s),它的影响平均有800~1000km的直经范围,每当台风登陆后我国沿海可以产生一次大风过程,而风速基本上在风力机切出风速范围之内。
是一次满发电的好机会。
登陆台风每年在我国有11个,而广东每年登陆台风最多为3.5次,海南次之2.1次,台湾1.9次,福建1.6次,广西、浙江、上海、江苏、山东、天津、辽宁合计仅1.7次,由此可见,台风影响的地区由南向北递减、对风能资源来说也是南大北小。
由于台风登陆后中心气压升高极快,再加上东南沿海东北~西南走向的山脉重叠,所以形成的大风仅在距海岸几十公里内。
风能功率密度由300w/m2锐减到100w/m2以下。
综观上述,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿。
相对内陆来说这里形成了我国风能丰富带。
由于台湾海峡的狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区。
我国有海岸线多公里,岛屿6000多个,这里是风能大有开发利用的前景的地区。
3.内陆风能丰富地区,在两个风能丰富带之外,风能功率密度一般在100w/m2以下,可以利用小时数3000小时以下。
但是在一些地区由于湖泊和特殊地形的影响,风能也较丰富,如鄱阳湖附近较周围地区风能就大,湖南衡山、安徽的黄山、云南太华山等也较平地风能为大。
但是这些只限于很小范围之内,不像两大带那样大的面积,特别是三北地区面积更大。
青藏高原海拔4000m以上,这里的风速比较大,但空气密度小,如在4000m的空气密度大致为地面的67%,也就是说,同样是8m/s的风速,在平原上风能功率密度为313.6w/m2,而在4000m只为209.9w/m2,而这里年平风速在3~5m/s,所以风能仍属一般地区。
根据全国气象台部风能资料的统计和计算,绘制出中国风能分布和中国风能分区及占全国面积 中国风能分区及占全国面积的百分比指标 丰富区 较丰富区 可利用区 贫乏区年有效风能密度(W/m2) >200 200-150 <150-50 <50年有效风能密度(W/m2) >5000 5000-4000 <4000-2000 <2000年≥3m/s累计小时数(h) >2200 2200-1500 <1500-350 <350占全国面积的百分比(%) 8 18 50 24太阳辐射的能量到地球表面约有2%转化为风能,风能是地球上自然能源的一部分,我国风能潜力的估算如下:风能理论可开发总量R,全国为32.26亿kW,实际可开发利用量R,按总量的1/10估计,并考虑到风轮实际扫掠面积为计算气流正方形面积的0.785倍(lm直径风轮面积为0.52×π=0.785m2),故实际可开发量为: R = 0.785R/10 = 2.53亿kW。
求采纳