使用Ray创建高效的深度学习数据管道-人工智能
扫码关注官方订阅号
20231102213112_13597.jpg" alt="Ray创建高效的深度数据管道人工智">首先,我们来看一下模型训练的伪代码
为了解决这个问题,可以将数据管道视为生产者——消费者的问题。数据管道生成小批量数据并写入有界缓冲区。模型/GPU从缓冲区中消费小批量数据,执行前向/反向计算并更新模型权重。如果数据管道能够以模型/GPU消费的速度快速生成小批量数据,那么训练过程将会非常高效。
Tensorflowtf.dataAPI提供了一组丰富的功能,可用于高效创建数据管道,使用后台线程获取小批量数据,使模型无需等待。仅仅预先获取数据还不够,如果生成小批量数据的速度比GPU消费数据的速度慢,那么就需要使用并行化来加快数据的读取和转换。为此,Tensorflow提供了交错功能以利用多个线程并行读取数据,以及并行映射功能使用多个线程对小批量数据进行转换。
由于这些API是基于多线程的,所以可能会受到Python全局解释器锁(GIL)的限制。Python的GIL限制了一次只能运行单个线程的字节码。如果在管道中使用纯TensorFlow代码,通常不会受到这种限制,因为TensorFlow核心执行引擎在GIL的范围之外工作。但是,如果使用的第三方库没有解除GIL限制或者使用Python进行大量计算,那么依赖多线程来并行化管道就不可行
为了加快数据加载速度,可以使用多进程生成器。
如果进行分析,可以发现相当多的时间都花在了准备数据的反序列化上。在多进程生成器中,生产者进程会返回大型NumPy数组,这些数组需要进行准备,然后在主进程中进行反序列化。那么在进程间传递大型数组时,如何提高效率呢?
这就是Ray发挥作用的地方。Ray是一个用于在Python中运行分布式计算的框架。它带有一个共享内存对象存储区,可在不同进程间高效地传输对象。特别的是,在不进行任何序列化和反序列化的情况下,对象存储区中的Numpy数组可在同一节点上的worker之间共享。Ray还可以轻松实现数据加载在多台机器上的扩展,并使用ApacheArrow高效地序列化和反序列化大型数组。
Ray带有一个实用函数from_iterators,可以创建并行迭代器,开发者可以用它包装data_generator生成器函数。
以上就是使用Ray创建高效的深度学习数据管道的详细内容,更多请关注php中文网其它相关文章!
微信扫码关注PHP中文网服务号
QQ扫码加入技术交流群
Copyright2014-2023AllRightsReserved|苏州跃动光标网络科技有限公司|