干货太多完全听不过来…… 预告 常青藤名校嘉宾来了!一周4场学术公开课 (干货太多完全不能吃了)
学术青年分享会 是雷锋网旗下垂直AI领域学术交流社群——AI研习社所发起的活动。AI研习社致力于建设全球领先的AI求知社区,基于专业直播平台,进行技术交流的公益传播和深度交流。
分享会 通过邀请学术界、工业界学者进行高质量内容分享,让广大学术青年了解最前沿的学术与行业技术进展,成为连接学术界与工业界之间的桥梁,雷锋网希望能够从中发现一大批优秀AI人才,推动国内AI行业的持续发展。
接下来是一大波国庆节后的分享会预告:
10月10日 10:30
分享内容: 本次分享会嘉宾将会通过解读这篇被CVPR2017收录的论文《End-to-end Learning of Driving Models fROM Large-scale Video>10月11日 20:00
主题: 基于LSTM-RNN的语音声学建模技术
分享内容: LSTM-RNN可以对长时序列信息进行建模,广泛应用于语音识别声学模型建模中。此次主要介绍近期LSTM的一些研究进展包括LC-BLSTM,2D-LSTM等。其中LC-BLSTM采用了双向LSTM结构,并在训练和解码时加入了数帧的未来信息来控制延时,解决了普通双向LSTM无法用于实时语音识别的问题;而2D-LSTM在时间和频域两个维度上进行循环,同时保存时间轴与频域轴的序列信息,Google和微软都在大规模语音识别任务上验证了这类2D-LSTM结构的有效性。
分享人: 张弼弘,2017年4月毕业于西北工业大学并获得硕士学位。研究方向是语音识别声学建模,深度学习,机器学习。目前就职于搜狗。
主题: 神经霍克斯过程:一个基于神经网络的自调节多变量点过程
分享内容: 对连续时间上的离散事件进行建模,一直是一个非常重要的研究方向:发现事件中广泛而复杂的影响关系,可以帮助我们准确地预测未来事件的类型和发生时间。在这篇NIPS文章中,作者设计了一个基于神经网络的点过程模型,并通过一个continuous-time LSTM增强了该模型在连续时间上的表达和泛化能力。实验结果充分证实了所提出的模型的良好性能。
分享人: 梅洪源 ,JHU CS系二年级博士生,导师Jason Eisner教授。 研究兴趣在于机器学习和自然语言处理。 在此之前,他曾在芝加哥大学自然科学学院获得硕士学位,并在华中科技大学电子信息工程系获得学士学位。他曾在微软研究院和丰田技术研究所实习。
主题: Beyond Universal Saliency: Personalized Saliency Prediction with Multi-task CNN
分享内容: 显著性检测是计算机视觉中长期存在的问题。现有的大部分研究都集中在探索用户间普遍存在的显著性模型,即缺乏对个体在性别、年龄、习惯上差异的重视。在这篇IJCAI文章中,作者首次提出了个人显著性预测任务,并建立了首个个人显著性数据库,同时提出基于卷积神经网络的多任务个人显著性预测模型(Multi-Task Convolutional Neural Network),实验结果验证了模型的良好的性能。
分享人: 徐衍钰,上海科技大学信息学院三年级博士生,导师为高盛华教授。2011年本科毕业于大连理工大学。主要研究方向为计算机视觉,例如显著性分析、人脸对齐等。
扫描二维码备注「 雷锋网 」立即报名活动。
原创文章,未经授权禁止转载。详情见 转载须知 。