API入门教程 Dataset TensorFlow全新的数据读取方式 (api 教程)
雷锋网 AI科技评论按:本文作者 何之源 ,该文首发于知乎专栏,雷锋网 AI科技评论获其授权转载。
Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。
此前,在tensorflow中读取数据一般有两种方法:
Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。
本文就来为大家详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。
在TensorFlow 1.3中,Dataset API是放在contrib包中的:
而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:
下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。
让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:
在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator。
Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。
先以最简单的,Dataset的每一个元素是一个数字为例:
这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。
如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。
在非Eager模式下,读取上述dataset中元素的方法为:
对应的输出结果应该就是从1.0到5.0。语句iterator => 从内存中创建更复杂的Dataset
之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:
其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。
例如:
传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。
在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{"image": image_tensor, "label": label_tensor}的形式,这样处理起来更方便。
tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典:
这时函数会分别切分"a"中的数值以及"b"中的数值,最终dataset中的一个元素就是类似于{"a": 1.0, "b": [0.9, 0.1]}的形式。
利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:
Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。
常用的Transformation有:
下面就分别进行介绍。
map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:
batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:
(3)shuffle
shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:
repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:
如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:
例子:读入磁盘图片与对应label
讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。
对应的程序为(从官方示例程序修改而来):
在这个过程中,dataset经历三次转变:
除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:
它们的详细使用方法可以参阅文档: Module: tf.data
在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_ONE_shot_iterator()来创建一个one shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:
initializable iterator必须要在使用前通过sess.run()来初始化。 使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator 。一个简单的initializable iterator使用示例:
此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。
initializable iterator还有一个功能:读入较大的数组。
在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。 当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):
reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅 官方介绍 ,这里就不再赘述了。
本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。
在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。
在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。
作为兼容两种模式的Dataset API,在今后应该会成为TensorFlow读取数据的主流方式。关于Dataset API的进一步介绍,可以参阅下面的资料:
雷锋网 AI科技评论
版权文章,未经授权禁止转载。详情见 转载须知 。