不仅有Facebook参与 也果然被 ICML 还记得Wasserstein 接收 GAN吗 (不仅有发现美的眼睛,更有创造美的)
雷锋网 AI 科技评论按:FAcebook列出了自己的9篇 ICML 2017论文,Wasserstein GAN 赫然位列其中。
ICML 2017 仍然在悉尼火热进行中,Facebook 研究院今天也发文介绍了自己的 ICML 论文。Facebook有9篇论文被 ICML 2017接收,这些论文的主题包括语言建模、优化和图像的无监督学习;另外 Facebook 还会共同参与组织Video Games and Machine Learning WorkShop。
在9篇接收论文中,Facebook 自己最喜欢的是「 Wasserstein Generative Adversarial Networks 」(WGAN)这一篇,它也确实对整个机器学习界有巨大的影响力,今年也掀起过一阵 WGAN 的热潮。
Ian Goodfellow 提出的原始的 GAN 大家都非常熟悉了,利用对抗性的训练过程给生成式问题提供了很棒的解决方案,应用空间也非常广泛,从此之后基于GAN 框架做应用的论文层出不穷,但是 GAN 的训练困难、训练进程难以判断、生成样本缺乏多样性(mode collapse)等问题一直没有得到完善解决。 这篇 Facebook 和纽约大学库朗数学科学研究所的研究员们合作完成的 WGAN 论文就是众多尝试改进 GAN、解决它的问题的论文中具有里程碑意义的一篇。
WGAN 的作者们其实花了整整两篇论文才完全表达了自己的想法。在第一篇「Towards Principled Methods for Training Generative Adversarial Networks」里面推了一堆公式定理,从理论上分析了原始GAN的问题所在,从而针对性地给出了改进要点;在这第二篇「Wasserstein Generative Adversarial Networks」里面,又再从这个改进点出发推了一堆公式定理,最终给出了改进的算法实现流程。
WGAN 成功地做到了以下爆炸性的几点:
而改进后相比原始GAN的算法实现流程却只改了四点:
所以数学学得好真的很重要,正是靠着对 GAN 的原理和问题的深入分析,才能够找到针对性的方法改进问题,而且最终的呈现也这么简单。( WGAN详解参见雷锋网 AI 科技评论文章 令人拍案叫绝的Wasserstein GAN )
WGAN 论文今年1月公布后马上引起了轰动,Ian Goodfellow 也在 reddit 上和网友们展开了热烈的讨论。不过在讨论中,还是有人反映 WGAN 存在训练困难、收敛速度慢等问题,WGAN 论文一作Martin Arjovsky也在 reddit 上表示自己意识到了,然后对 WGAN 做了进一步的改进。
改进后的论文为「 Improved Training of Wasserstein GANs 」。原来的 WGAN 中采用的 Lipschitz 限制的实现方法需要把判别器参数的绝对值截断到不超过固定常数 c,问题也就来自这里,作者的本意是避免判别器给出的分值区别太大,用较小的梯度配合生成器的学习;但是判别器还是会追求尽量大的分值区别,最后就导致参数的取值总是最大值或者最小值,浪费了网络优秀的拟合能力。改进后的 WGAN-GP 中更换为了梯度惩罚gradient penalty,判别器参数就能够学到合理的参数取值,从而显著提高训练速度,解决了原始WGAN收敛缓慢的问题,在实验中还第一次成功做到了“纯粹的”的文本GAN训练。(WGAN-GP详解参见雷锋网 AI 科技评论文章 掀起热潮的Wasserstein GAN,在近段时间又有哪些研究进展? )
Facebook 此次被 ICML 2017 接收的9篇论文里的另外8篇如下,欢迎感兴趣的读者下载阅读。
雷锋网 AI 科技评论会继续带来更多精彩论文和现场演讲报道,请继续关注。
掀起热潮的Wasserstein GAN,在近段时间又有哪些研究进展?
令人拍案叫绝的Wasserstein GAN
原创文章,未经授权禁止转载。详情见 转载须知 。