舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片 即将轰动市场 (冯诺依曼 死因)

近几年再次兴起的AI热潮,不仅引发了芯片巨头们的AI芯片战,更让科技巨头们纷纷开始了AI芯片的研发。在AI芯片的争夺中,算力首先成为了焦点。不过,算力提升之后,算力与内存的不匹配又成为了阻碍AI向前发展的关键。此时,一家成立于2017年的初创公司提出的存储优先架构(SFA)表示很好地解决了内存墙的问题,事实是否如此?

舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

AI芯片的真正问题是内存墙

算力、算法、数据被认为是AI向前发展的三个关键因素,更高的算力自然必不可少,这也直接驱动了AI芯片公司们推出更高算力的AI芯片。不过,目前对于AI芯片的定义并没有一个严格和公认的标准,一个非常宽泛的看法是,面向人工智能应用的芯片都可以称为AI芯片。

需要指出,这一轮的AI热潮很大程度是机器学习尤其是深度学习受到了追捧。由于目前常见的芯片类型CPU、GPU、FPGA、ASIC都可以运行深度学习算法,因此这些芯片都可以称为AI芯片。

舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

这就意味着,如今AI芯片重要的意义在于满足机器学习的算法的需求。但即便是经验丰富的Arm,认识到AI芯片关键的问题也走了一些弯路。Arm机器学习部门商业与市场副总裁Dennis Laudick此前接受雷锋网采访时就表示:“我们第一次看到机器学习时,首先想到的是从已有的处理器类型中的一种开始,因此我们开始用了GPU的方法,但最终发现机器学习处理器面临的不是处理问题而是数据问题,最终取消了GPU的方法,创建了一个全新的处理器专注于数据以及机器学习中的数据类型,可以执行并行指令。”

说的更直白一些,深度学习算法具有高并发、高耦合的特点,不仅有大量的数据参与到整个算法运行的过程中,这些数据之间的耦合性也非常紧密,因此对存储带宽提出了非常高的要求,大规模的数据交换,尤其是芯片与外部DDR(Double> 舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

深度学习算法的“三高”特点

内存墙问题的4种常见解决方法

上面提到的芯片都基于传统冯·诺伊曼体系结构,这个体系结构是数据从处理单元外的存储器提取,处理完之后在写回存储器。因此,用冯诺依曼体系结构的处理器处理深度学习算法时,提供算力相对简单易行,但当运算部件达到一定的能力,存储器无法跟上运算部件消耗的数据,再增加运算部件也没有用,这无疑阻碍了AI芯片的向前发展。

舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

为了解决内存墙问题,业界目前有4种常见的解决方法。第一种是加大存储带宽 ,采用高带宽的外部存储,如HBM2,降低对DDR的访问。这种方法虽然看似最简单直接,但问题在于缓存的调度对深度学习的有效性就是一个难点。

第二种方法是直接在芯片里放入大量存储 ,采用分布式片上存储,抛弃DDR,比如集成几十兆字节到上百兆的SRAM。这种方法看上去也比较简单直接,但成本高昂也是显著的劣势。

第三种方法则是从算法入手,通过设计一些低比特权重的神经网络,比如二值网络,简化数据和需求和管理。 显然,这种方法是以算法精度、应用范畴为代价,难以被大范围应用。

第四种方法是在存储单元内部设计计算单元的新型存储器,进行存算一体化(In Memory Computing) ,这也是目前业内一个比较受关注的方向,具备低成本和低功耗的特点。不过这种方法的可行性以及是否能最终被业界广泛应用仍是未知,因此对于这种方法我们将继续保持关注。

显然,目前常见的解决AI芯片内存墙的方法都还未成功解决这一问题,其中很重要的原因在于, 绝大部分的AI芯片,可以认为其为基于类CPU架构,专注于计算整合,通过提升并行度的方法进行庞大计算力的结构调整,对存储资源的使用和调度,依然依赖于编译器或传统的缓存管理算法,无法解决内存墙问题。

SFA架构如何突破内存墙瓶颈?

想要真正解决内存墙问题,舍弃冯诺依曼架构无疑是更好的方式,但难度也可想而知。不过,成立于2017年的北京探境科技在成立之初就重新思考了存储和计算的关系,以存储驱动计算,设计了与类CPU架构完全不同的计算架构——存储构SFA(Storage First Architecture)。

舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

2017年业界对AI芯片的关注点更多是算力的提升,意识到要解决内存墙问题的公司还不多,为什么探境科技能更早看到内存对AI芯片的重要性并研发出存储优先架构?探境科技CEO鲁勇接受雷锋网专访时表示:“主要有两方面的原因,一方面是我们的芯片设计团队成员平均拥有15年以上芯片行业设计经验,有足够的芯片设计能力,同时,团队成员还有深挖问题核心本质的思路和能力。所以从能力上和做事的方法上都有这样的条件,我们就坚定的去解决难题。”

舍弃冯诺依曼架构突破内存墙瓶颈的AI芯片,即将轰动?

不同于常见的解决内存瓶颈的方法,SFA是以存储调度为核心的计算架构,数据在存储之间的搬移过程之中就完成了计算,计算对于数据来说只是一种演变。

“更具体的说,SFA架构,存储是我们优先的出发点,去考虑数据在搬移过程中做计算,也就是由数据带动计算而非由算子带动数据。与通常计算的先有计算指令然后提供数据相反,SFA架构是先有数据,然后再把算子交给它。”鲁勇进一步解释。

当然,完全舍弃冯诺依曼架构,实现全新的架构方式SFA架构面临不少挑战。鲁勇表示这其中涉及很多硬件的核心点、数据管理、算子节点如何灵活的连接起来都是非常难的问题。不过,他也透露称,SFA架构以图计算为基础,设计了非常精巧且有针对性的架构解决这些难题。这一点与AI大神Lecun所宣称的所有的神经网络都是图计算问题不谋而合。

难题突破之后, SFA架构具备了哪些优势?鲁勇介绍,首先就是芯片的PPA取得了巨大的突破 实验数据表明,比较类CPU架构采用的基于总线和指令集的映射方法,在同等条件下,数据访问可降低10~100倍。28nm工艺条件下,系统能效比达到4T OPS/W,计算资源利用率超过80%,DDR带宽占用率降低5倍。

其次,SFA架构可以支持任意神经网络。 也就是说,SFA架构可以支持不同大小的网络模型、不同的数据类型,包括定点型和浮点型,甚至一个神经网络里不同层使用不同的精度也可以支持。我们的AI芯片可以称得上通用型AI芯片,只要在神经网络深度学习框架下,GPU能支持的我们都能支持。

还有,SFA架构非常灵活, 基于它既可以推出本地或云端的推理芯片,也可以用于云端训练的芯片,终端的推理加训练芯片也能用,完全取决于最终产品的定位。

除了内存方面的突破,在算力提升方面SFA架构也有相应的优化。SFA架构的AI芯片不仅可以满足多精度计算,还能做到自适应的稀疏化处理,不需要在离线阶段做剪枝或者压缩处理。

据悉,探境的计算架构也采用了比较独特的无mac设计方式。

既然SFA架构具有多个优势,那么在探境科技看好的安防监控、工业制造、自动驾驶和语音人机交互市场,落地优势依旧明显吗?鲁勇指出,这几个领域看上去好像差别挺大,但对我们而言背后有一个贯穿一致的逻辑。 也就是核心都是SFA架构,根据不同的市场应用,套上不同的框架,最终变成不同的产品形态。

他强调,不同市场的差别并没有想象那么大。 算法层面,现在的语音和图像算法已经开始融合,都是基于深度学习的卷积神经网络(CNN),并不是原来想的那么泾渭分明。芯片角度,核心都是SFA架构,根据产品的定义不同,外面的接口也相对不同,这并不困难。

去年5月探境宣布完成数千万美元融资时,就已经制订了三年的产品规划,会以行业划分的形式,有节奏的推出产品及整体解决方案。雷锋网了解到,目前探境已经推出了包括语音唤醒、命令词识别、语音理解、通用型降噪的AI语音芯片。值得一提的是,这几款芯片都可以在不联网的情况下实现功能,这是算力和功耗优势的一个体现。

至于为何率先推出AI语音芯片,鲁勇认为物联网时代,语音成为了一种新的交互方式,也是一个入门的交互方式,这个入口非常重要。

看好AI语音市场的不止探境科技,传统的芯片公司杭州国芯、瑞芯微等,以及擅长语音算法的思必驰、出门问问等都推出了AI语音芯片。那么,探境在市场上的竞争力如何?

鲁勇表示,算法公司对芯片的理解程度非常有限, 我认为AI时代的竞争力已经单纯看PPA转移到了软硬结合的能力,只有非常深度的软硬结合才能具备非常核心的竞争力。 在实际的落地过程中,SFA架构对客户非常友好。因为SFA架构不仅不需我们在工具链上不用投入过多的精力,在客户实际使用的时,我们会提供一个非常好用的工具链,通过工具链的转换,可以让客户的算法甚至不用重新训练就可以部署。

而最让鲁勇感到骄傲的是探境AI语音芯片最终体现出的竞争力。他表示,AI芯片的竞争力的直接体现就是成本,探境的AI语音芯片的成本优势还是基于SFA架构,在同样的芯片面积下能提供更高的算力,也就是PPA显著提升。在与客户接触之后,我们的芯片获得了客户的追捧。

探境科技作为一家成立于2017年的初创公司,能够在成立之初就看到AI芯片本质的问题是数据难题就领先了不少的AI芯片公司。并且,从探境公布的数据以及给出的信息来看SFA架构确实是突破内存墙的好方法,实现了许多AI芯片公司希望达成的AI通用芯片的愿望,兼具低功耗、低成本的特点。

只是,鲁勇并未透露探境量产的AI芯片具体的合作伙伴。另外,探境AI芯片的商用也处于相对早期的阶段,能否最终大获成功搅动AI芯片市场我们需要保持关注。相信具有真正独特技术和有实际产品的公司会大概率取得成功。

不可否认的是,鲁勇此前在芯片巨头Marvell十年的工作经历对于其能够把握AI的发展趋势以及聚集人才研发出独特的AI芯片有不小的帮助。还需强调的是,在AI时代,只有软硬更好的结合,才能最终体现出更大的竞争力。

为什么存储器会成为阻碍AI发展的难题?

资本寒冬,这样的AI芯片公司2019年危矣

原创文章,未经授权禁止转载。详情见 转载须知 。

全局中部横幅
深圳订花送花鲜花店

深圳1号鲜花凭鲜花运营经验打造花卉平台。主营鲜花预定送花批发、花艺布置、鲜花、礼篮、生日、婚庆宴会用花、开业舞狮、开业策划、汽球派对等产品,花艺师培训和办公室绿植租赁出租等,买花订花送上门就选1号鲜花同城送。

泉州晋江市中亚无纺布制品有限公司首页

晋江市中亚无纺布制品有限公司无纺布首页

国美触屏版

国美(gome.com.cn)国美电器唯一官方网上商城,中国领先的专业家电网购平台。全球品牌电视、洗衣机、电脑、手机、数码、空调、电脑配件、生活电器、网络产品等正品行货,更低价格,更快送达,为您提供便捷、诚信的服务。有国美,生活美!

上海美的中央空调

在上海买美的中央空调找上海茂月制冷设备有限公司,茂月专卖的上海美的中央空调报价低、实际购买到的上海美的中央空调价格实惠,作为上海美的中央空调专卖代理服务商有着20多年的美的中央空调行业服务经验,专业提供美的家用、商用中央空调及家居舒适集成系统的销售、设计、安装、维修、保养服务,致力于为用户提供专业化的服务,并基于

商圈广告

星幕传播是全媒体广告一站式服务商,提供地铁广告、机场广告、高铁广告、LED广告、地标广告、公交广告、电梯广告等户外广告及线上营销的传播方案。广告投放热线:400-660-9039

913手游网

913手游网提供独具特色的手游资讯,大量手机游戏攻略,评测文章,以及热门手游资料专题,从游戏玩家的真实需求出发,各种攻略资讯实时更新,分享有用的游戏资讯。

科学技术处

临沂大学科学技术处

重庆飘逸数字科技有限公司

重庆飘逸科技有限公司是一家专注于线上公共服务缴费及卡券类电子交易的网络服务商,旗下的充值缴费平台可提供通讯费(话费、流量、宽带等)、生活缴费(水、电、气等)、加油卡、商超卡券、视频会员等多种移动互联网交易服务。凭借先进的技术系统、创新的营销渠道和优质的运营服务,公司同时服务于阿里系、腾讯系、头条系等互联网巨头,向支付宝、淘宝、天猫、微信、京东、拼多多、抖音、银行、石化等电商及生活服务类APP提供充值缴费API接口,为消费者提供最便捷、最优惠、最安全的充值缴费服务。目前,公司年交易80亿,并迅速向百亿级平台迈进。

祥和圆

台州市祥和机械有限公司主要从事矿山钎头,球齿钻头,凿岩钻头等产品生产加工与销售,厂家现货供应,质量有保证,可承接批发,价格更优惠,种类规格齐全,发货速度快,诚信企业,值得信赖.订购热线15267202796.

可兰素

江苏可兰素环保科技有限公司成立于2009年8月,是一家生产车用AdBlue及车用AdBlue加注设备、工业脱硝还原剂、防冻液以及汽车环保类产品的高科技产业。

全局底部横幅