详解 智能医学影像分析的前沿与挑战 (详解智能医学英文版)

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

雷锋网按 :本文整理自雅森科技高级算法研究员杨士霆,在雷锋网硬创公开课上的演讲,主题为“智能医学影像分析的前沿与挑战”。

杨士霆,毕业于台湾长庚大学电机工程研究所博士班,主攻医学影像处理与应用。研究领域涉及医学影像处理,生物医学资讯,医用光学,类神经与模糊理论,功能性磁振造影,医学物理与生医统计。曾在台湾林口长庚医院,宁波杜比医疗负责影像算法开发工作,现任职于北京雅森科技发展公司,担任高级算法研究员。

公开课视频如下:

以下为雷锋网整理的演讲主要文字内容(关注雷锋网医疗科技微信公众号“”,回复“117”下载完整PPT):

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

本次公开课主要分为四部分:

医学影像与人工智能

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

近三十年的医学成像,是一种实用性及创新概念的革命,主要包括两个部分:

这两个部分造就了成像上的进展。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

医学成像主要分为两个形态:

一是结构性图像,它主要可以得到组织的结构性特征,但无法看到生物有机代谢的情况;

二是功能性图像,它可以提示代谢的衰变与下降,或功能性的疾病。

相比结构性图像,功能性图像的空间解析度较差。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

我们可以透过不一样的介质来形成图像,结构性成像包括:

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

功能性图像有:

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

关于人工智能,我们一直听到它将对日常生活产生重要的影响。而如今,计算机已经可以像人类一样准确地处理图像与视频,甚至比人类表现还要好。这些突破主要来自深度学习。

关于深度学习,可以理解为它是机器学习的一个分支,其主要目的是模拟更高层次抽象思维。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

深度学习主要是建构大量的抽象层,帮助将一些输入的讯号映射到更高层的表现方式。例如,处理图像中,输入的特征可以是每个像素,可以计算像素的强度,它可能是一组边缘,也可能是特定的轮廓与区域。透过这些方式可以让深度学习去达到我们的目的。

深度学习主要有非监督与半监督特征学习,它会分层进行特征提取。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

在医学成像中,要做到精准诊断,对疾病进行评估,需要:

上面提到的四个主要问题,都可以通过深度学习的方式来促进诊断,即将需要治疗的地方做明确的辨识,辅助医师做更有效地诊断,找到病灶。

深度学习在医学影像上的应用

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

接下来要讲解深度学习技术在医学影像上的应用。目前医学影像领域的主要处理内容有:

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

我们为什么要在医学图像上使用深度学习的方法呢?因为图像有不同形态,来自不同的组织,而如前所述,深度学习可以进行分析与处理,让一些人为误差得到调整。通过深度学习提取最主要的特征,它也可以对疾病分类,做图像分类与分割。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

接下来讲讲深度学习的临床应用。

上图中的案例是全自动淋巴结检测。左边是纵隔的淋巴结,右边是腹部淋巴结。可以看到,图像标定出来的位置中,其实淋巴结有很大的差异,比如形状与位置不一定,它与周围的组织也非常类似。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

过去传统的图像处理,是透过电脑断层图像,取得3D的立体影像,然后做影像上的处理分析与应用。比较新的方法是増强式3D Haar特征,建立整体完整的检测器,透过scanning window检测淋巴结。

但传统方法表现不佳,主要是维度上的限制。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

在前两年的一篇论文中,有人透过深度学习的方式自动检测淋巴结。做法是,首先通过随机森林分类器RF,检测出大概位置并做标定;然后将标定出来的淋巴结,根据矢状面、横切面、冠状面、三维角度,互相正交结合,创建出2.5维的空间投影立体特征。接下来,透过HOG特征提取方法,对空间投影图像进行向量特征截取。然后通过SVM训练方法,将取得的特征做加强和训练,然后自动检测出淋巴结位置。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

用深度学习的方法做分割,在2015年的一篇文章也有展现。它主要利用卷积神经网络CNN,自动将大脑灰质、白质、脑脊髓翼自动分割,从而分析大脑的病变。

这篇论文中利用深度学习将不同的病人的资料做分割,精确度都不错。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

具体来说,作者用CNN将不同类型的MRI图像,做有效分割,精确分割灰质、白质、脑脊髓翼。

他们通过CNN,将图像分成一块块patch,然后对完整图像做学习,训练与分类。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

上面这个研究是海马回的分割。研究表明,海马回主要与记忆有关。上图是用手标定的海马回的位置,可以看出与淋巴结一样,它与临近组织很相近,分割有一定难度。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

在2015年的一篇论文中,就有作者通过CNN,用2D patches、三平面patches,以及改良式3D patches的方法,将海马回进行深度学习,从而分割。左边是还没处理的情况,右是明确定位了海马回的位置。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

在光学图像上,这里的例子是糖尿病视网膜病变的检测。一般来说,糖尿病患者容易发生眼部疾病,视网膜血管也会有所改变。上面中间的图是正常情况,右边是患者图像。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

所以,在一些研究中用CNN的方法,针对眼底图像进行糖尿病视网膜病变的辨识。已经可以判断严重的情况。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

另外还有深度学习在细胞检测中的应用。比如2013年的一篇论文,主要是胸部癌症细胞的检测,标定的是细胞癌症,通过max-pooling CNN,针对胸部组织图像做有丝分裂的分析。结果显示,精确度达到了将近9成。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

上图就是针对组织图像的分析,得到的有线分裂的情况。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

另外,还有个很好玩的例子。CNN除了做图像识别,还可以将3T MRI图像透过CNN网络,重建出类7T MRI的图像。所谓T是指特斯拉,即磁场感应强度。我们医学中常见的核磁机器是1T和1.5T,而7T是磁场强达7特斯拉,这种设备昂贵,需要很多的费用,但7T图像的性噪比强。所以,研究中想通过深度学习将3T变7T图像。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

上图可以看出,左边3T图像中,脑部边缘有些模糊,但处理过后的右图变得清晰了。这是用低成本的方法做重建。

智能医学影像分析的挑战

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

以上就是深度学习在医学影像上的应用案例。那深度学习在应用当中,还有哪方面的挑战呢?

目前论文的实验,主要是探讨结构效度的评估,一般是在实验架构的基础上,评估CNN配合哪一个patch,哪些在实验中是好是坏。但没有思考,在实际使用深度学习的过程当中,表现是否如预期想的那么好。

使用模型当中,也常常选择很多不一样类型的特征去训练,这个过程中怎么样找出好的有效特征?另外,在建构深度学习模型中,如何透过那么多参数做调整。这些都是深度学习的挑战。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

另外,想要发展一个有效的深度理论学习模型,要基于经验资料,去调试与评估网络的效果,这也是主要挑战的目标。在这个过程中,要评估与测量模型复杂的程度,比如:

一是深度学习过程中有神经元的概念,那到底要多少数量?到底要多少patch?

二是还要考虑计算单元的形态,要放置多少的隐藏层、卷积层?这部分是深度学习要思考的。

三是考虑到模型的架构和拓扑的结构,怎么样将CNN与不同类型的机器学习模型,做互相的结合与比较?

四是是怎么样有效地将模型产生与建立起来?

最后是学习中效率问题。深度学习早在80年代就有所发展,但由于计算机的限制,其发展也并不如意。最近计算力的进步才将机器学习的机制建立起来。回过头来看,到了如今的情况,硬件越来越好,那怎么样让学习效率做更有效的分配或调整呢?怎么样将学习效率调整到比较好的阶段,达到很好的结果?这都是深度学习的挑战。

另外,也需要采集数据的量到底需要有多大?听到了很多大数据的概念,但MR图像可能是128*128维度,也有很多的训练。大的数据量的分析与统计都会影响到大数据分析与学习。怎么样做权衡和评估的一个挑战。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

我们需要融合经验资料,建构深度的理论学习模型,以取得好的评估效果。要做到这些,我们就需要定义一个理论策略,通过这个策略,去评估、调试模型。

在这个过程中,有一个常规化的机制。即最简单的输入-隐藏-处理-输出训练模型。但我们如何调整顺序,使得对模型的调试更加明确、更加常规化,也是值得探讨的地方。

我们在做深度学习的过程中,有个很一致的概念:我们都希望多放些层,或者减少内容。有时候,可能需要多一些特殊的加成层。但如何明确定义这个概念,使其常规化,也是我们要挑战的目标。

另一个挑战是:我们在做深度学习的过程中,最常使用的是非深度学习的架构。那我们要怎样评估这个架构,找出一个好方法呢?

最后,是关于计算效率。我们先前也有提到,机器效能和数据都会直接或间接影响计算效率。如何取得平衡点,是之后的深度学习研究中很好的一个研究方向。

详解:智能影像分析的前沿与挑战 | 雷锋网公开课

我们做一个最简单的总结:深度学习主要用来做什么?

深度学习有很大的潜力,能分析大量资料,通过学习给出分析结论和答案。所以其应用广泛,不仅是在医学影像领域,在其他领域也有很大的贡献。并且在我们分析大数据时,深度学习可以为我们提供精简信息。深度学习的可发展性还是非常大的,还有很多东西值得去挑战,值得大家一起去探讨。

在2016年RANA会议上,深度学习、智能学习非常热门,医生们意识到深度学习可以辅助诊断,甚至能帮他们找出更有效的治疗方法,并且最近的一些会议中,我们都可以发现深度学习、智能分析的庞大市场和发展潜力

我相信,深度学习在智能医学影像分析中一定有很大的价值。

原创文章,未经授权禁止转载。详情见 转载须知 。

全局中部横幅
房产网站

房产网站排名,根据网站的综合值按照不同的房产网站进行筛选排名结果,通过筛选房产网站可以看到每个房产网站里面的网站排名优质的网站是哪些

养胃吃什么

豆果美食是最优质的美食菜谱社区,提供各种菜谱大全,食谱大全,家常菜做法大全,丰富的菜谱大全可以让您轻松地学会怎么做美食,展现自己的高超厨艺,开启美好生活!

EMC易倍·(中国)体育官方网站

海南驰骏实业有限公司成立于2017年10月11日,公司具有现代管理理念,雄厚的资金实力。经营范围:汽车及汽车配件、五金机电销售及租赁服务;消防设备、工程机械、环卫设备及配件销售;园林绿化、环境工程施工和养护;全生物降解系列、新能源系列。

碰碰车

好奇游乐是一家综合性游乐设备制造企业,主要产品有儿童碰碰车、雪地碰碰车、冰上碰碰车、碰碰车、漂移碰碰车、激光碰碰车、游乐场碰碰车,好奇游乐产品远销海内外且已荣获几十项国家专利及出口欧美国家的各项认证!

水泥砖,草坪砖,仿石砖

姜堰区力宇新型建材厂一直致力于品质,环保,节能方面的实践,以市场为导向,依靠完善的技术,高标准要求,生产各种规格型号的水泥砖,彩砖,仿石材pc彩砖,路沿石彩瓦,水泥井盖等产品.

链云

专业提供香港服务器租用,海外服务器租用,美国服务器租用,新加坡服务器租用,香港云主机,美国云主机,新加坡云主机

焕新生活格调

焕新生活格调是一个集合职场提升、品质生活、兴趣分享和热点资讯的多元化平台,致力于为用户提供有趣实用的内容,从职场技能到生活技巧,从兴趣爱好到社会热点,让用户在轻松的氛围中发现生活的新鲜灵感。这里汇集了各类兴趣爱好者的心得分享,是满足多元化兴趣和个性化成长的理想去处。无论是追求自我提升,还是拓宽兴趣领域,这里都能找到属于自己的精彩时刻。

首页

《无线电》创刊于1953年,秉承“普及电子技术知识,培养电子科技人才”的办刊宗旨,为普及、推广应用电子技术作出了重大贡献,为中国的电子事业培养了几代人才。60多年来,《无线电》杂志不断发展,紧跟电子行业发展的步伐,为海内外广大电子行业厂商、从业人员及电子爱好者提供互通信息、展现实力的重要平台。被誉为“良师益友”,是电子爱好者不可缺少的常备工具书。《无线电》从电子技术的发展到应用,从家电产品的推介、选购、使用到维修,从工厂、研究所、各企事业单位应用的电路到适合个人工作、学习、生活的制作项目,从引导青少年、初学者入门到培养他们成为有一技之长的有用人才,《无线电》提供了多层次、多方位的服务。

在线客服系统

米多客全渠道客服系统是集网站在线客服系统、微信公众号客服系统、微信小程序客服系统等功能于一身的全渠道客服系统,可实现多渠道对话接入,统一对话窗口,统一客服管理界面

激光焊接机

惠州市镭凌激光科技有限公司,是一家研发、生产、销售、服务为一体的激光智能设备公司,产品有激光打标机,激光焊接机,激光切割机等近百种工业激光设备。服务热线:4000752499

会计师考试网

全国税务筹划师培训考试认证信息平台

全局底部横幅